Oshima, T. & Nagai, T. (1993). Tetrahedron Lett. 34, 649-652.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
Wägner, A. (1980). Acta Cryst. B36, 813-818.

Acta Cryst. (1995). C51, 1152-1155

Tris(*n*-butyl)phosphine, Tris(*tert*butyl)phosphine and Tris(trimethylsilyl)phosphine

JOACHIM BRUCKMANN AND CARL KRÜGER

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim/Ruhr, Germany

(Received 24 August 1994; accepted 9 December 1994)

Abstract

Single crystals of the title compounds, $C_{12}H_{27}P$ (1), $C_{12}H_{27}P$ (2), and $C_9H_{27}PSi_3$ (3), were grown in capillaries at low temperature using zone-melting techniques [Brodalla, Mootz, Boese & Osswald (1985). J. Appl. Cryst. 18, 316–319]. The molecular and crystal structures of all three compounds were determined at 102 K. Compound (1) has a pseudo-mirror plane and C—P— C angles between 100.5 (1) and 102.7 (1)°. Compound (2) has a pseudosymmetric threefold rotation axis and C—P—C angles of 107.1 (1), 107.4 (1) and 107.8 (1)°. Isomorphous compound (3) has Si—P—Si angles between 105.8 (1) and 106.5 (1)°.

Comment

In our systematic investigation of phosphine ligands, we crystallized tris(n-butyl)phosphine [P(n-butyl)₃], (1). The C—P—C angles are between 100.5(1) and $102.7(1)^{\circ}$ (Table 2, Fig. 1). These values are as expected for non-bulky and flexible ligands such as *n*-butyl. The C—C distances tend to lower values with increasing distance from the P atom (Table 2). The C atoms of each

n-butyl group compose a plane [torsion angles range from 177.3 (3) to 179.3 (3)°]. Plane 1 (C1, C2, C3, C4)

and plane 2 (C5, C6, C7, C8) are oriented nearly parallel to one another [the dihedral angle between 1 and 2 is 5(1)°], and both are almost perpendicular to plane 3 (P, C9, C10, C11, C12) [the dihedral angles between 1 and 3, and 2 and 3 are 90(1) and 95(1)°, respectively]. Plane 3 is an approximate mirror. The cone angle θ (for a definition see Tolman, 1977; Bruckmann & Krüger, 1995) is determined as 159 ± 2°. Tolman (1970) measured 130 ± 4° as the minimum cone angle, using CPK atomic models, by folding back the flexible substituents on the P atom, while maintaining threefold symmetry (Tolman, 1970, 1977).

Fig. 1. An ORTEPII (Johnson, 1976) view of P(n-butyl)₃ with displacement ellipsoids drawn at the 50% probability level.

The dimensions and general molecular structure of tris(tert-butyl)phosphine [P(tert-butyl)₃], (2), are as expected. Although the tert-butyl groups are crystallographically independent, they are arranged in a pseudosymmetric way generated by a threefold rotation axis passing through the P atom (Fig. 2). Corresponding angles show no significant differences, but five of the six tetrahedral angles at every tertiary C atom are significantly different. All C-C distances are within the same range (Table 4). H atoms were located and are in good agreement with the threefold pseudosymmetry. In (2), the C—P—C angles are widened to 107.1(1), 107.4(1)and 107.8 (1)° by steric effects. These effects are also evident from the large angles involving the P atom, the tertiary C atoms and atoms C4, C7 and C12 [118.0(1), 117.8 (1) and 117.4 (1)°, respectively]. The values of all other P—C—C angles are about 10° smaller (Table 4). The P—C distances are more than 0.06 Å longer than in (1). This reflects the bulkiness of the tert-butyl groups. The cone angle θ is 176 \pm 2° and differs slightly from the value of $182 \pm 2^{\circ}$ given by Tolman (1970).

1152

Fig. 2. An ORTEPII drawing of P(tert-butyl)₃ with 50% probability displacement ellipsoids.

Crystals of tris(trimethylsilyl)phosphine [P(trimethylsilyl)₃], (3), are isomorphous with those of P(tert-butyl)₃ (Fig. 3). Because of the larger Si atoms replacing the tertiary C atoms, compound (3) is less strained, as can be seen from the Si-P-Si angles [105.8 (1), 105.8 (1) and $106.5(1)^{\circ}$, as well as from the angles involving P, Si, and either C1, C4 or C7 [115.5(1), 116.5(1)]and $116.0(1)^{\circ}$, respectively]. All other angles at the Si atoms are close to tetrahedral angles. There are no more significant differences in the pertinent angles (Table 6). The cone angle θ of (3) is $178 \pm 2^{\circ}$.

Fig. 3. An ORTEPII plot of P(trimethylsilyl)₃ with displacement ellipsoids shown at the 50% probability level.

Experimental

All three title compounds were grown by a zone-melting technique in an argon-filled capillary of diameter 0.2 mm with a focused halogen lamp as heat source (Brodalla et al., 1985). Compound (1) used pentane solvent and had a T_{melt} of 213 and a T_{growth} of 195 K. Compound (2) used a pentane solvent, $T_{\text{melt}} = 292$ and $T_{\text{growth}} = 281$ K. Compound (3) had $T_{\text{melt}} =$ 295 and $T_{\text{growth}} = 293 \text{ K}.$

Compound (1)

Crystal data

$C_{12}H_{27}P$	Mo $K\alpha$ radiation
$M_r = 202.32$	$\lambda = 0.71073 \text{ Å}$

Monoclinic $P2_1/n$
a = 12569(4) Å
h = 5.1148(7) Å
c = 21.74(1) Å
C = 21.74(1) R $B = 104.04(4)^{\circ}$
$\mu = 104.04(4)$ $V = 12561(8) ^{3}$
V = 1550.1(6) A
L = 4
$D_x = 0.99 \text{ Mg m}^{-1}$

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: none 3441 measured reflections 3011 independent reflections 2482 observed reflections $[I > 2\sigma(I)]$

Refinement

Refinement on F R = 0.041wR = 0.049S = 2.02482 reflections 226 parameters All H-atom parameters refined isotropically

Cell parameters from 25 reflections $\theta = 6 - 18^{\circ}$ $\mu = 0.162 \text{ mm}^{-1}$ T = 102 KCylindrical height: 0.6 mm diameter: 0.2 mm Colourless

 $R_{\rm int} = 0.0058$ $\theta_{\rm max} = 27.4^{\circ}$ $h = -15 \rightarrow 15$ $k=0\to 6$ $l = 0 \rightarrow 28$ 3 standard reflections frequency: 30 min intensity decay: 11.4%

 $w = 1/\sigma^2(F)$ $(\Delta/\sigma)_{\rm max} = 0.04$ $\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.25 \ {\rm e} \ {\rm \AA}^{-3}$ Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fracti	ional atomic	coordinates	and	equival	ent
isotropic a	lisplacement	parameters (Ų) f	for (1)	

$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$				
	x	у	Z	U_{eq}
Р	0.1600(1)	0.0006 (1)	0.0314 (1)	0.019 (1)
C(1)	0.1422(1)	-0.2244 (3)	-0.0366 (1)	0.019(1)
C(2)	0.1820(1)	-0.1032 (3)	-0.0911 (1)	0.020(1)
C(3)	0.1438 (1)	-0.2512 (4)	-0.1533 (1)	0.023 (1)
C(4)	0.1853 (2)	-0.1295 (5)	-0.2067 (1)	0.034 (1)
C(5)	0.1255 (1)	-0.2177 (3)	0.0910(1)	0.019 (1)
C(6)	0.1466 (1)	-0.0904 (3)	0.1564 (1)	0.020(1)
C(7)	0.0926(1)	-0.2337 (3)	0.2020(1)	0.022 (1)
C(8)	0.1110 (2)	-0.1032 (4)	0.2663 (1)	0.029 (1)
C(9)	0.3107(1)	0.0256 (3)	0.0581 (1)	0.020(1)
C(10)	0.3787 (1)	-0.2241 (3)	0.0701 (1)	0.021 (1)
C(11)	0.5014 (1)	-0.1708 (4)	0.0920(1)	0.029 (1)
C(12)	0.5700 (2)	-0.4175 (4)	0.1011 (1)	0.033 (1)

l geometric	parameters (A, °) for (1)
1.843 (2)	PC(5)	1.841 (2)
1.847 (2)	C(1)—C(2)	1.527 (2)
1.523 (2)	C(3)—C(4)	1.517 (3)
1.528 (2)	C(6)-C(7)	1.520 (2)
1.515 (3)	C(9)C(10)	1.525 (2)
1.525 (2)	C(11)—C(12)	1.514 (3)
102.7 (1)	C(9)PC(1)	102.2 (1)
100.5 (1)	C(2)C(1)P	111.7 (1)
113.3 (1)	C(4)-C(3)-C(2)	112.5 (2)
112.3 (1)	C(7)—C(6)—C(5)	113.4 (1)
113.4 (1)	C(10)C(9)P	119.1 (1)
112.7 (1)	C(12)—C(11)—C(10)	113.1 (2)
	<i>l geometric</i> 1.843 (2) 1.847 (2) 1.523 (2) 1.528 (2) 1.515 (3) 1.525 (2) 102.7 (1) 100.5 (1) 113.3 (1) 113.4 (1) 112.7 (1)	$\begin{array}{llllllllllllllllllllllllllllllllllll$

TWO ISOMERS OF C12H27P AND C9H27PSi3

Compound (2)		C(9)PC(5)	107.1 (1)	C(9)PC(1)	107.4 (1)
Crystal data $C_{12}H_{27}P$ $M_r = 202.32$ Monoclinic $P2_1/n$ a = 9.219 (1) Å b = 13.768 (5) Å c = 11.133 (2) Å $\beta = 111.36 (1)^\circ$	Mo K α radiation $\lambda = 0.71073$ Å Cell parameters from 25 reflections $\theta = 8-16^{\circ}$ $\mu = 0.167 \text{ mm}^{-1}$ T = 102 K Cylindrical	C(5) - P - C(1) $C(4) - C(1) - C(2)$ $C(3) - C(1) - C(2)$ $C(2) - C(1) - P$ $C(8) - C(5) - C(6)$ $C(7) - C(5) - C(6)$ $C(6) - C(5) - P$ $C(12) - C(9) - C(10)$ $C(11) - C(9) - C(10)$ $C(10) - C(9) - P$ Compound (3)	107.8 (1) 109.2 (2) 105.2 (2) 105.9 (1) 105.1 (1) 108.2 (1) 108.2 (1) 108.2 (1) 105.0 (1) 109.0 (1)	$\begin{array}{c} C(4) - C(1) - C(3) \\ C(4) - C(1) - P \\ C(3) - C(1) - P \\ C(8) - C(5) - C(7) \\ C(8) - C(5) - P \\ C(7) - C(5) - P \\ C(7) - C(5) - P \\ C(12) - C(9) - C(11) \\ C(12) - C(9) - P \\ C(11) - C(9) - P \end{array}$	108.2 (1) 118.0 (1) 108.6 (1) 109.4 (1) 106.9 (1) 117.8 (1) 109.3 (1) 117.4 (1) 107.2 (1)
V = 1316.0 (6) Å ³	height: 0.4 mm	Crystal data			
$D_x = 4$ $D_x = 1.02 \text{ Mg m}^{-3}$	Colourless	$C_9H_{27}PSi_3$ $M_r = 250.55$		Mo $K\alpha$ radiation $\lambda = 0.71073$ Å	
Data collection Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: none 3270 measured reflections 2973 independent reflections 2412 observed reflections $[I > 2\sigma(I)]$	$R_{int} = 0.0071$ $\theta_{max} = 27.4^{\circ}$ $h = -11 \rightarrow 11$ $k = 0 \rightarrow 17$ $l = 0 \rightarrow 14$ 3 standard reflections frequency: 30 min intensity decay: 6.9%	Monoclinic $P2_1/n$ a = 9.859 (2) Å b = 15.010 (6) Å c = 11.947 (5) Å $\beta = 113.91 (2)^{\circ}$ $V = 1616 (1) Å^3$ Z = 4 $D_x = 1.03 \text{ Mg m}^{-3}$ Data collection		Cell parameters from reflections $\theta = 8-15^{\circ}$ $\mu = 0.344 \text{ mm}^{-1}$ T = 102 K Cylindrical height: 0.4 mm diameter: 0.2 mm Colourless	om 25 m
Refinement		Enraf-Nonius CAL)-4	$R_{\rm int}=0.0020$	
Refinement on F R = 0.040 wR = 0.045 S = 1.8 2412 reflections 226 parameters	$w = 1/\sigma^{2}(F)$ $(\Delta/\sigma)_{max} = 0.05$ $\Delta\rho_{max} = 0.51 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.29 \text{ e } \text{\AA}^{-3}$ Atomic scattering factors from International Tables	diffractometer $\omega/2\theta$ scans Absorption correcting none 3767 measured refl 3442 independent r	on: ections eflections	$\theta_{\text{max}} = 27.5^{\circ}$ $h = -12 \rightarrow 12$ $k = 0 \rightarrow 19$ $l = 0 \rightarrow 15$ 3 standard reflection frequency: 30 m	ons in

2878 observed reflections

 $[l>2\sigma(l)]$

Refinement on F

2878 reflections

226 parameters

All H-atom parameters

refined isotropically

Refinement

R = 0.034

Р -Si(1) Si(2) Si(3) C(1) C(2)

C(3) C(4) C(5) C(6) C(7) C(8) C(9)

wR = 0.046S = 1.9

frequency: 30 min intensity decay: 10.2%

 $w=1/\sigma^2(F)$ $(\Delta/\sigma)_{\rm max} = 0.05$ $\Delta \rho_{\text{max}} = 0.42 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.37 \text{ e } \text{\AA}^{-3}$ Atomic scattering factors

from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 5. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (3)

$$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

x	У	Z	U_{eq}
0.2299 (1)	0.2511 (1)	-0.0269 (1)	0.015(1)
0.1894 (1)	0.1581 (1)	0.1030(1)	0.016(1)
0.2688 (1)	0.3856 (1)	0.0631 (1)	0.018 (1)
0.4470(1)	0.2086 (1)	-0.0298 (1)	0.020(1)
0.3110 (2)	0.1751 (2)	0.2686 (2)	0.024 (1)
-0.0093 (2)	0.1721 (2)	0.0799 (2)	0.024 (1)
0.2137 (3)	0.0418 (1)	0.0587 (2)	0.026 (2)
0.4517 (3)	0.4028 (2)	0.1945 (2)	0.028 (1)
0.1182 (3)	0.4058 (2)	0.1172 (2)	0.026(1)
0.2487 (3)	0.4689 (2)	-0.0581(2)	0.029 (2)
0.5902 (3)	0.1676 (2)	0.1182 (2)	0.032 (2)
0.4035 (3)	0.1185 (2)	-0.1473 (3)	0.033 (2)
0.5250 (3)	0.3052 (2)	-0.0823 (3)	0.038 (2)

Z = 4 $D_x = 1$

Data c

Enraf-Noni	ius CAD-4
w/2A scans	
Absorption	correction.
none	concetion.
3270 measu	ured reflections
2073 indep	andent reflection
2973 mucp 2412 obser	ved reflections
2412003ci	
$\mu > 20$	1)]

Refiner

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$) for (2)

for X-ray Crystallography

(1974, Vol. IV)

$U_{\text{eq}} = (1/3) \sum_i \sum_i U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_i.$

	x	у	z	U_{ea}
Р	0.2437(1)	0.2495(1)	0.4644 (1)	0.015(1)
C(1)	0.4370 (2)	0.2849(1)	0.4499 (2)	0.023 (1)
C(2)	0.4015 (2)	0.3674 (2)	0.3494 (2)	0.032 (1)
C(3)	0.4937 (2)	0.1997 (2)	0.3896 (2)	0.032 (1)
C(4)	0.5713 (2)	0.3163 (2)	0.5730 (2)	0.029 (1)
C(5)	0.2693 (2)	0.1238(1)	0.5430(1)	0.019 (1)
C(6)	0.1351 (2)	0.1058(1)	0.5905 (2)	0.025 (1)
C(7)	0.4230 (2)	0.1026(1)	0.6547 (2)	0.024 (1)
C(8)	0.2457 (2)	0.0487 (1)	0.4346 (2)	0.028 (1)
C(9)	0.2063 (2)	0.3388(1)	0.5810(1)	0.019(1)
C(10)	0.2283 (2)	0.4428 (1)	0.5408 (2)	0.029 (1)
C(11)	0.0318 (2)	0.3317(1)	0.5605 (2)	0.025 (1)
C(12)	0.3037 (2)	0.3271(1)	0.7250 (2)	0.023 (1)

Table 4. Selected geometric parameters (Å, °) for (2)

PC(1)	1.911 (2)	PC(5)	1.915 (2)
PC(9)	1.908 (2)	C(1)C(2)	1.544 (3)
C(1)C(3)	1.534 (3)	C(1)C(4)	1.538 (3)
C(5)C(6)	1.534 (2)	C(5)C(7)	1.535 (3)
C(5)C(8)	1.544 (3)	C(9)C(10)	1.536 (2)
C(5)—C(8)	1.544 (3)	C(9)—C(10)	1.536 (2)
C(9)—C(11)	1.544 (2)	C(9)—C(12)	1.535 (2)

Tuble 0. Dereere		parameters (11,)]01 (3)
P-Si(1)	2.241 (1)	P—Si(2)	2.246 (1)
P-Si(3)	2.248 (1)	Si(1)C(1)	1.870 (3)
Si(1)C(2)	1.876 (2)	Si(1)C(3)	1.868 (2)
Si(2)C(4)	1.868 (3)	Si(2)C(5)	1.869 (3)
Si(2)C(6)	1.862 (3)	Si(3)C(7)	1.865 (3)
Si(3)C(8)	1.870 (3)	Si(3)C(9)	1.865 (3)
Si(3)—P—Si(2)	106.5 (1)	Si(3)—P—Si(1)	105.8 (1)
Si(2)—P—Si(1)	105.8 (1)	C(3)—Si(1)—C(2)	108.0 (1)
C(3)—Si(1)—C(1)	109.0 (1)	C(3)—Si(1)—P	107.9 (1)
C(2)—Si(1)—C(1)	108.9 (1)	C(2)-Si(1)-P	107.3 (1)
C(1)—Si(1)—P	115.5 (1)	C(6)—Si(2)—C(5)	108.1 (1)
C(6)—Si(2)—C(4)	108.8 (1)	C(6)—Si(2)—P	106.7 (1)
C(5)—Si(2)—C(4)	108.5 (1)	C(5)—Si(2)—P	107.8 (1)
C(4)—Si(2)—P	116.5 (1)	C(9)—Si(3)—C(8)	108.1 (1)
C(9)—Si(3)—C(7)	108.6 (1)	C(9)—Si(3)—P	108.0(1)
C(8)—Si(3)—C(7)	109.2 (1)	C(8)—Si(3)—P	106.7 (1)
C(7)—Si(3)—P	116.0 (1)		

Table 6. Selected geometric parameters (Å, °) for (3)

Data collection and cell refinement: CAD-4 Software (Enraf-Nonius, 1989). Data reduction: DATAP (Coppens, Leiserowitz & Rabinovich, 1965). Structure solution: direct methods using SHELX86 (Sheldrick, 1990). Structure refinement: SHELXL93 (Sheldrick, 1993) and GFMLX (Flack, 1983). Molecular graphics: ORTEPII (Johnson, 1976), XANADU (Roberts & Sheldrick, 1976) and SYBYL (Tripos Associates Inc., 1994). Preparation of material for publication: DAESD (Davis & Harris, 1970).

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates, and complete geometry for (3) only, including H-atom geometry, have been deposited with the IUCr for all three structures (Reference: HR1046). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Brodalla, D., Mootz, D., Boese, R. & Osswald, W. (1985). J. Appl. Cryst. 18, 316-319; adapted for use on a CAD-4.
- Bruckmann, J. & Krüger, C. (1995). Acta Cryst. C51, 1155-1158.
- Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.
- Davis, R. E. & Harris, D. R. (1970). DAESD. Roswell Park Memorial Institute, USA.
- Enraf-Nonius (1989). CAD-4 Software. Version 5. Enraf-Nonius, Delft, The Netherlands.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Roberts, P. & Sheldrick, G. M. (1976). XANADU. Program for Crystallographic Calculations. Univ. of Cambridge, England.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Tolman, C. A. (1970). J. Am. Chem. Soc. 92, 2956-2965.
- Tolman, C. A. (1977). Chem. Rev. 77, 313-348.
- Tripos Associates Inc. (1994). SYBYL. Version 6.03. Tripos Associates Inc., St Louis, USA.

Acta Cryst. (1995). C51, 1155-1158

Trimethylphosphine and Triethylphosphine in the Solid State

JOACHIM BRUCKMANN AND CARL KRÜGER

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim/Ruhr, Germany

(Received 24 August 1994; accepted 9 December 1994)

Abstract

Crystals of the title compounds, $C_3H_9P(1)$ and $C_6H_{15}P(2)$, were grown in glass capillaries using zone-melting techniques [Brodalla, Mootz, Boese & Osswald (1985). *J. Appl. Cryst.* **18**, 316–319]. Data sets were collected at 102 K. The asymmetric unit of (1) contains two independent half molecules which are situated on mirror planes. A small amount of disorder was observed for the P atoms (94/6). The C—P—C angles lie between 99.1 (1) and 99.4 (1)°. In (2), the atoms are arranged in a pseudo-threefold-rotation symmetry. The C—P—C angles are in the range 98.8 (1)–100.2 (1)°.

Comment

Phosphines are important ligands in organometallic chemistry. To rationalize the steric effects in phosphineexchange equlibria of organo-nickel compounds, the cone angle, θ , concept was introduced by Tolman (1970). The cone angle θ was correlated with the relative stabilities of complexes containing tertiary substituted phosphines, as well as with spectroscopic observations for these phosphine complexes (Tolman, 1970; Rahman, Liu, Eriks, Prock & Giering, 1989). The steric parameter θ for triply substituted phosphines is the apex angle of a cone, centered 2.28 Å from the P atom, which touches the van der Waals radii of the outermost atom of each ligand (Tolman, 1977). The crystal structures of PMe₃, (1), and PEt_3 , (2), were studied as part of a program to systematically examine the structures of uncoordinated phosphine ligands.

In PMe₃, Bartell & Brockway (1960) determined the C—P—C angle as $98.6(3)^{\circ}$ and the C—P distance as 1.847(3) Å by means of electron diffraction. Magnusson (1986) undertook *ab initio* calculations and computed

Acta Crystallographica Section C ISSN 0108-2701 ©1995